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Large-scale cellular automata simulations of the immune system response
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The sequential nature of the process allowing the immune system to learn how to withstand pathogen agents
is explored by means of large-scale computer simulation of the Celada-Seiden immunological automaton. In
accord with our previous results, it is found that the learning process proceeds via a sequential cascade in
affinity space.

PACS number~s!: 87.16.Ac
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The immune system~IS! is a complex organization mad
of cells and molecules whose collective dynamics exhib
emergent properties that can hardly be inferred from the
derlying dynamics of its microconstituents. One major su
property is thelearningability: how does the IS learn how t
mount a specific response against invading entities~antigens,
or Ag for short!? This capability is rooted in the specifi
functions of each of the microconstituents, but it is also t
that the way the IS as a whole learns to withstand anti
attacks depends even more on the mutual interactions
tween these microconstituents. Once the importance of
lective behavior is acknowledged, a relevant question
comes whether nonequilibrium statistical mechanics and
theory of ~nonlinear! dynamical systems provide a conv
nient mathematical framework to characterize, at least se
quantitatively, the generic features of the immune syst
response@2,3#.

In a recent paper, we presented preliminary efforts alo
this line using the Celada-Seiden immunological cellular
tomaton@1,4#. The Celada-Seiden@5# ~CS! cellular automa-
ton is based on a bit-string representation of the biolog
actors, namely B cells, T cells, antigen presenting cells~mac-
rophages!, antigens, antibodies. Details on the rules gove
ing the microdynamics of these actors have been discu
elsewhere@4,5# and will not be repeated here. Within th
bit-string model, each cell is characterized by abit-matching
number mdenoting the number of matching bits with the b
string representing the antigen. Bits match when they
complementary (0↔1).

High ~low! affinity is therefore to be understood as hig
~low! values of the matching numberm. With a string length
l, the repertoireof the model is best organized into a hiera
chical set ofl 11 classes of cells characterized by thematch-
ing number m50,1,2 . . . l . The genericmth class contains
(m

l )5 l !/(m!( l 2m)!) elements; the sum over all possib
classes involving a total repertoire(m50

l (m
l )52l possible

specificities. This defines the internal phase space of the
tomaton. Theactive region~defined later! has a structure
markedly pyramidal: only one state with perfect matchm
5 l , l states withm5 l 21, and so on down the line.

The population density in this phase space is given by
actual occupation numberNm(x,t) of cells in classm at site
x at timet. Knowledge of the occupation numbersNm at each
PRE 611063-651X/2000/61~2!/1851~4!/$15.00
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space-time location yields a complete characterization of
dynamical system. The B and T cell binding affinity is e
pressed via an‘‘affinity potential’’ V m . The specific form of
the affinity potential is not known in detail from biologica
data, but it is plausible to express it in the form of a shar
increasing function ofm above a critical cutoffmc, l , and
zero below it. As a result, only a subset of the phase sp
characterized by the conditionmc<m< l , is immunologi-
cally active. We shall call this theactive regionof immuno-
logical phase-space, whose sizel 2mc11 counts the popu-
lations competing for the antigen.

We reported@1# numerical evidence that the IS learnin
process proceeds through a cascade of higher and highe
finity populations~B cell! in which the low-affinity modes
indirectly feed the higher-affinity ones in a sequential-li
process dubbedlearning cascade. A quantitative indicator of
the aforementioned learning cascade was identified with
Kullback relative entropy, or information gain@6#, defined as
G(t)5(mf m

2 lnfm
2 /fm

1 , where we refer to a transformation tak
ing the system from initial state ‘‘1’’ at timet5t1 to final
state ‘‘2’’ at time t25t11t, and f m5Nm /(m8Nm8 is the
probability density~normalized to 1) of classm. Ordinary
Boltzmann entropy did not show any sign of monotonic b
havior, which is not surprising since there is no reason
believe the underlying microdynamics of the CS automa
should obey a Boltzmann H principle.

In accord with the theory of clonal selection, the learni
process is basically a shift of the occupation numbers
wards the high-affinity region of the spectrum, a bias
wards ‘‘smart’’ individuals. A prime indicator of this shift is
an increase in time of the average matchingm(t)
5(m,xm fm(x,t) wherex runs over the spatial extension o
the system. The gain can be interpreted as the informa
cost needed to bring the IS from low- to high-affinity state
and under certain assumptions on the shape off m it can be
expressed as an analytic function ofm @1#.

Our previous results pertained to relatively small rep
toires, withl 512, consisting of 21254096 specificities. This
is about four orders of magnitude lower than theexpressed
repertoire of the human immune system. The quest
which makes the hard core of this paper, is whether the
neric features observed in our previous work do survive o
larger repertoires are considered. To this purpose, we h
1851 ©2000 The American Physical Society
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upgraded our computational tool to take full advantage
parallel computingcapabilities@4#. Specifically, we have ex
tended the size of the repertoire from 212 up to 220, namely
more thantwo orders of magnitude above our previous wo
more than an order of magnitude beyond any previous st
we are aware of, and, more importantly,only an order of
magnitudebelow the expressed repertoire of the real IS. B
ing aware that a mere rise in the size of the repertoire d
not necessarily imply a corresponding gain of immunologi
fidelity, we have also included hypermutation, namely,
mechanism by which clones that differentiate from th
mother cells may show point mutations in their recept
@7,8#.

In the model, hypermutation is represented by a giv
strings turning into a different strings8 as a result of one~or
more! bits changing state~zero to one, one to zero!. The
qualitative effect of hypermutation is to generate cells t
would not appear otherwise in the system, thus giving the
more freedom to explore its phase space. The chief ques
is whether such freedom is used to help affinity maturati
and, if so, to what extent. This question is genuinely dyna
cal in nature. On the one hand, affinity-degrading~high-to-
low! mutations are more likely than affinity-enhancing~low-
to-high! ones simply on account of the pyramidal structure
the active region of the phase space. On the other hand, s
high-match cells are more effective in capturing the antige
once generated they get a chance to reproduce faster tha
other competing cells and possibly promote the affin
maturation. Whether such a chance does indeed materi
in actual practice is a nontrivial question that involves
genuinely dynamic nonequilibrium process. Computer sim

TABLE I. Affinity potential Vm for convex and concave shape

m ConvexVm ConcaveVm

ConcaveVm/
ConvexVm

15 0.05000 0.05000 1.000
16 0.09103 0.50072 5.501
17 0.16572 0.74829 4.515
18 0.30171 0.88428 2.931
19 0.54928 0.95897 1.746
20 1.00000 1.00000 1.000
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lation is well placed to provide a semiquantitative guidan
in this complex territory.

We have performed a series of numerical simulations
varying the string lengthl, with and without mutation, and
the shape of the affinity potential. The simulations are p
formed on a 16316 grid, with the following parameters
average lifetime of B cells,tB510, initial populationB(0)
52184, birth rateḂ.0.07B(0). The Ag areinjected at a rate
of 1000 individuals per time step. Each time step cor
sponds to about 8 h in real time. Finally, we assume a tim
independent single-bit mutation rate equal top50.02. We do
not address the issue ofoptimalmutation schedule as in Re
@9#. Our observations are based on a series of simulat
with l 520, mc515 with and without mutation, and two
typical shapes of the affinity:~a! Convex,~b! Concave.

The values of the affinity functions are reported in Tab
I.

Each simulation has been performed 40 times with diff
ent random seeds to double-check possible dramatic di
ences in the outcomes. Although no quantitative conclusi
can be drawn, we can state that there are no indications
strong sensitivity to the choice of the random numbers.

Our data show that affinity maturation does take place
in all casesit proceeds through a sequential cascade fro
low- to high-affinity populations~see Fig. 1!.

Since no virgin B cells abovemc are allowed, the appear
ance of active cells in the course of time is necessarily du
hypermutation. The conclusion is that, albeit penalized in
average, hypermutation does have a dramatic effect in
moting affinity maturation. The intuitive picture is that, onc
a favorable mutation occurs by fluctuation, the higher re
tivity of the high-affinity cells allows them to reproduce an
survive for a long time.

In all cases, affinity maturation ramps up betweent550
and t5100 time units, that is, between two and four wee
respectively, in real time. During this burst, the global affi
ity V(t)5(mNm(t)Vm grows by almost two orders of mag
nitude, or more, depending on the shape of the affinity
tential, as shown in Fig. 3. This burst is followed by a slow
but steady growth associated with an increasing fraction
high-affinity cells.

Runs without hypermutation~see Fig. 2! also show a
learning cascade, actually faster than with hypermutat
FIG. 1. Population growth for affinity classes of the active region for string length of 20 bits~details in the plots’ titles!.
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FIG. 2. Same data as in Fig. 1 for runs without mutation.
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This means that the chance of generating active cellsm
>mc) by a mutation event is smaller than the correspond
chance of generating it out of the binomial distribution
virgin cells in the hypermutation-free scenario.

Given this intrinsically transient scenario, it is useful
develop a semiquantitative rationale for the role of the sh
of the affinity potential.

To this purpose, let us consider all matching bits o
bitstring s ~whose length isl ) as part of a substringg
~‘‘good’’ bits ! and all other bits ofs as part of a substringb
~‘‘bad’’ bits !. String g has lengthm (m>mc. l /2). Obvi-
ously,b’s lengthm̄ is equal tol 2m.

By definition, mutations onb enhance the affinity wherea
mutations ong decrease it.

To compute the total probability of increasing the Ha
ming distance~i.e., the number of 0↔1 matchings! of n
units, we must take into account all possible combinations
mutations in theb andg strings such thatk2 j is equal ton.
Here,k and j are, respectively, the number of mutations
the b andg string andj ,k so thatn.0. The expression o
such total probability is

Pn
15 (

j ,k:k5n1 j
S m

j D pjqm2 j S m̄
k D pkqm̄2k. ~1!

In Eq. ~1! the block (j
m)pjqm2 j gives the probability ofj

mutations in theg string, whereas the block (k
m̄)pkqm̄2k gives

the probability ofk mutations inb. Upon using the relation
k5n1 j , we may recast Eq.~1! in terms of the indexj, which
runs between 0 andm̄2n ~otherwise we would have a de
grading mutation!. Consequently, we can write

Pn
15 (

j 50

m̄2n S m
j D S m̄

n1 j D pn12 jql 2(n12 j ). ~2!

The probability of affinity-degrading mutations,Pn
2 , is

obtained by consideringj .k, swappingm with m̄ in the
above expression and letting the index run from 0 tom̄.

One minute’s thought reveals that, sincemc. l /2, under
the standard conditionm.m̄, P5Pn

12Pn
2 is negative, re-

flecting the intuitive idea that on average, mutation wo
against high-affinity cells.
g
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It is now instructive to observe that for low mutation rat
p!1, the summation in expression~2! can be replaced by its
first order term. This leads to a very handy expression for
total one-bit affinity-improving mutation rate,

P1
1;m̄p~12p! l 215~ l 2m!p~12p! l 21, ~3!

showing that, within this approximation, the one-bit impro
ing mutation probability decays linearly withm.

Coming back to the interpretation of our results, the p
ture is as follows. Once an active cell materializes,
chance of capturing an antigen and rapidly duplicating it c
be estimated asAm513Vm , that is, one cell times its mi-
croscopic affinityVm . How many cells should materializ
before the duplication process is actually triggered? The c
dition is of courseNmVm>1, which sets a natural threshol
1/Vm for the affinity maturation process to take off. Th
threshold would of course favor highm’s, were it not for the
strong penalty set by the mutation probability: a direct jum
forward of n matching numbers scales roughly likepn,
which means that the next matching number abovemc is
picked up by the conditionNmVmpm2mc.1, associated with
a critical thresholdNm

c ;pmc2m/Vm . It is easily seen thatNm
c

is a sharply decreasing function ofm, unlessVm would grow

FIG. 3. Total affinity as a function of time~log-log!.
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faster than the decrease ofpm2mc, not a plausible assumptio
given the small value ofp. This explains the sequential na
ture of the learning cascade.

The next question relates to the mid-long term dynam
of the response. Here, two competing effects must be
anced.

The probability of cell clonation is proportional toVm . A
stimulated cell duplicates every step during four steps a
stimulation, yielding 16 clones in four steps. This expone
tial growth is contrasted by a mean hypermutation loss p
portional toP. There is no way for mutation to compete wi
such exponential growth in the short term.

It is plausible to assume that the long-term winner is
lected by the condition of maximizingNmVm /P, which leads
to a second threshold,Nm

c,2;P/Vm . Now, using the simpli-
fied expressionP1

1 given by Eq.~3!, it is readily seen that
highest-affinity modes are favored unlessVm grows more
slowly than P1

1 , i.e., linearly, with m. This supports the
intuitive idea that convex potentials favor the developm
of high-affinity populations as the asymptotic carriers of t
IS response.

Of course, the notion of asymptotic, long-term carrie
although interesting from the point of view of statistical m
chanics~final attractor of the system! is not necessarily the
one most relevant to immunological purposes. To this e
one is probably more interested in the short- and mid-te
~days-to-weeks! dynamics of the global affinityV(t)
5(mNm(t)Vm .

This is shown in Fig. 3 for the two different choices
affinity potential. From these curves we see that, notw
standing the significant statistical fluctuations in the init
et
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phase, indeed the concave potential yields the quickest
most intense response, especially within the ramp-up per
up to t;100. This is obviously due to the much higher a
finity of the B cells~see fourth column in Table I!. Asymp-
totically, however, our data suggest that the convex sh
might be able to recover due to the emergence of per
match cells withm5 l suffering less competition with othe
cells as compared to the case of a concave potential.

The above considerations, albeit still semiqualitative, p
vide a sound background for the interpretation of affin
maturation as a cascade process in affinity space. They
show that the learning cascade is quite robust vis-a-vis
shape of the affinity potential. This latter, however, plays
central role in the short- and mid-term dynamics of the
response.

In closing, a few considerations on computational perf
mance are in order. The parallel simulator takes about
ms/step per grid point, corresponding to about 10,000
elapsed time for a 500-step-long~about 160 days! simulation
on four processors of an UltraSparc Enterprise 45
Memory requirements peak at about 2 GBytes during
burst of affinity maturation. These figures prove that the n
merical investigation of the immune system response via
Celada-Seiden automaton requires substantial amount
computational resources.
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