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Large-scale cellular automata simulations of the immune system response
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The sequential nature of the process allowing the immune system to learn how to withstand pathogen agents
is explored by means of large-scale computer simulation of the Celada-Seiden immunological automaton. In
accord with our previous results, it is found that the learning process proceeds via a sequential cascade in
affinity space.

PACS numbd(s): 87.16.Ac

The immune systerflS) is a complex organization made space-time location yields a complete characterization of the
of cells and molecules whose collective dynamics exhibitsdynamical system. The B and T cell binding affinity is ex-
emergent properties that can hardly be inferred from the unpressed via atiaffinity potential” V ,,. The specific form of
derlying dynamics of its microconstituents. One major suctthe affinity potential is not known in detail from biological
property is thdearningability: how does the IS learn how to data, but it is plausible to express it in the form of a sharply
mount a specific response against invading entigesigens, increasing function ofn above a critical cutofim.<I, and
or Ag for shor}? This capability is rooted in the specific zero below it. As a result, only a subset of the phase space,
functions of each of the microconstituents, but it is also truecharacterized by the conditiom,;<ms=I, is immunologi-
that the way the IS as a whole learns to withstand antigerally active. We shall call this thactive regionof immuno-
attacks depends even more on the mutual interactions béogical phase-space, whose sizem;+1 counts the popu-
tween these microconstituents. Once the importance of colations competing for the antigen.
lective behavior is acknowledged, a relevant question be- We reported 1] numerical evidence that the IS learning
comes whether nonequilibrium statistical mechanics and thprocess proceeds through a cascade of higher and higher af-
theory of (nonlineay dynamical systems provide a conve- finity populations(B cell) in which the low-affinity modes
nient mathematical framework to characterize, at least semindirectly feed the higher-affinity ones in a sequential-like
quantitatively, the generic features of the immune systenprocess dubbelgarning cascadeA quantitative indicator of
responsg2,3]. the aforementioned learning cascade was identified with the

In a recent paper, we presented preliminary efforts alonglullback relative entropy, or information gaj], defined as
this line using the Celada-Seiden immunological cellular auG (7)==, f2Inf/f}  where we refer to a transformation tak-
tomaton[1,4]. The Celada-Seidefb] (CS cellular automa-  ing the system from initial state “1” at tim¢=t; to final
ton is based on a bit-string representation of the biologicastate “2” at time t,=t,+ 7, and f,,=N,,/=,/N,, is the
actors, namely B cells, T cells, antigen presenting ¢eflac-  probability density(normalized to 1) of classn. Ordinary
rophages antigens, antibodies. Details on the rules governgoltzmann entropy did not show any sign of monotonic be-
ing the microdynamics of these actors have been discusseghvior, which is not surprising since there is no reason to
elsewherg[4,5] and will not be repeated here. Within this pelieve the underlying microdynamics of the CS automaton
bit-string model, each cell is characterized bhiamatching  should obey a Boltzmann H principle.
number mdenoting the number of matching bits with the bit  |n accord with the theory of clonal selection, the learning
string representing the antigen. Bits match when they ar@rocess is basically a shift of the occupation numbers to-
complementary (6-1). wards the high-affinity region of the spectrum, a bias to-

High (low) affinity is therefore to be understood as high wards “smart” individuals. A prime indicator of this shift is
(low) values of the matching number. With a string length  an increase in time of the average matching(t)

[, therepertoireof the model is best organized into a hierar- =3, ,mf,(x,t) wherex runs over the spatial extension of
chical set ofl +1 classes of cells characterized by thatch-  the éystem The gain can be interpreted as the information
|ng number n¥0,12...l. The genericmth class contains cost needed to bring the IS from low- to high-affinity states,
() =11/(mI(1—m)1) eIements the sum over all possible and under certain assumptions on the shapg,at can be
classes involving a total repertoirg,,_o(})=2' possible expressed as an analytic functionof1].

specificities. This defines the internal phase space of the au- Our previous results pertained to relatively small reper-
tomaton. Theactive region(defined later has a structure toires, withl =12, consisting of =4096 specificities. This
markedly pyramidal: only one state with perfect matoh is about four orders of magnitude lower than #wpressed
=1, | states withm=1—1, and so on down the line. repertoire of the human immune system. The question,

The population density in this phase space is given by thevhich makes the hard core of this paper, is whether the ge-
actual occupation numbeN,(x,t) of cells in classm at site  neric features observed in our previous work do survive once
x at timet. Knowledge of the occupation numbéNs, at each  larger repertoires are considered. To this purpose, we have
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TABLE |. Affinity potential V, for convex and concave shapes. lation is well placed to provide a semiquantitative guidance
in this complex territory.

ConcaveV/ We have performed a series of numerical simulations by
m ConvexVi, ConcaveV ConvexVp, varying the string length, with and without mutation, and
15 0.05000 0.05000 1.000 the shape of the affinity potential. The simulations are per-
16 0.09103 0.50072 5.501 formed on a 1&16 grid, with the following parameters:
17 0.16572 0.74829 4515 average lifetime of B cells;g=10, initial populationB(0)
18 0.30171 0.88428 2.931 = 2184, birth rateB=0.07B(0). The Ag arénjected at a rate
19 0.54928 0.95897 1.746 of 1000 individuals per time step. Each time step corre-
20 1.00000 1.00000 1.000 sponds to about 8 h in real time. Finally, we assume a time-

independent single-bit mutation rate equapte0.02. We do
not address the issue optimal mutation schedule as in Ref.
upgraded our computational tool to take full advantage of9]. Our observations are based on a series of simulations
parallel computingcapabilitieg 4]. Specifically, we have ex- with =20, m,=15 with and without mutation, and two
tended the size of the repertoire fron?2ip to 22°, namely  typical shapes of the affinitya Convex,(b) Concave.
more thartwo orders of magnitude above our previous work, The values of the affinity functions are reported in Table
more than an order of magnitude beyond any previous studly
we are aware of, and, more importantynly an order of Each simulation has been performed 40 times with differ-
magnitudebelow the expressed repertoire of the real IS. Be-ent random seeds to double-check possible dramatic differ-
ing aware that a mere rise in the size of the repertoire doegnces in the outcomes. Although no quantitative conclusions
not necessarily imply a corresponding gain of immunologicalcan be drawn, we can state that there are no indications of a
fidelity, we have also included hypermutation, namely, thestrong sensitivity to the choice of the random numbers.
mechanism by which clones that differentiate from their Our data show that affinity maturation does take place and
mother cells may show point mutations in their receptorgn all casesit proceeds through a sequential cascade from
[7,8]. low- to high-affinity populationgsee Fig. 1

In the model, hypermutation is represented by a given Since no virgin B cells above, are allowed, the appear-
strings turning into a different string’ as a result of onéor  ance of active cells in the course of time is necessarily due to
more bits changing statézero to one, one to zeroThe  hypermutation. The conclusion is that, albeit penalized in the
qualitative effect of hypermutation is to generate cells tha&verage, hypermutation does have a dramatic effect in pro-
would not appear otherwise in the system, thus giving the 1$noting affinity maturation. The intuitive picture is that, once
more freedom to explore its phase space. The chief question favorable mutation occurs by fluctuation, the higher reac-
is whether such freedom is used to help affinity maturationtfivity of the high-affinity cells allows them to reproduce and
and, if so, to what extent. This question is genuinely dynamisurvive for a long time.
cal in nature. On the one hand, affinity-degradihgyh-to- In all cases, affinity maturation ramps up betweerb0
low) mutations are more likely than affinity-enhancitigw-  andt=100 time units, that is, between two and four weeks,
to-high) ones simply on account of the pyramidal structure ofrespectively, in real time. During this burst, the global affin-
the active region of the phase space. On the other hand, sindg V(t)=Z2,N,(t)V,, grows by almost two orders of mag-
high-match cells are more effective in capturing the antigenspitude, or more, depending on the shape of the affinity po-
once generated they get a chance to reproduce faster than tdhtial, as shown in Fig. 3. This burst is followed by a slower
other competing cells and possibly promote the affinitybut steady growth associated with an increasing fraction of
maturation. Whether such a chance does indeed materializegh-affinity cells.
in actual practice is a nontrivial question that involves a Runs without hypermutatiorisee Fig. 2 also show a
genuinely dynamic nonequilibrium process. Computer simulearning cascade, actually faster than with hypermutation.
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FIG. 1. Population growth for affinity classes of the active region for string length of 2(dstails in the plots’ titles
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Matehing for Convex affinity (mutation off) Matching for Concave affinity (mutation off)
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FIG. 2. Same data as in Fig. 1 for runs without mutation.

This means that the chance of generating active cells (It is now instructive to observe that for low mutation rates
=m,.) by a mutation event is smaller than the correspondingp<<1, the summation in expressi¢p) can be replaced by its
chance of generating it out of the binomial distribution of first order term. This leads to a very handy expression for the
virgin cells in the hypermutation-free scenario. total one-bit affinity-improving mutation rate,

Given this intrinsically transient scenario, it is useful to
develop a semiquantitative rationale for the role of the shape +y -1 -1
of the affinity potential. Py ~mp(1=p)""=(=mp(1=p) "7, @)

To this purpose, let us consider all matching bits of a
bitstring s (whose length isl) as part of a substringy showing that, within this approximation, the one-bit improv-
(“good” bits) and all other bits of as part of a substring ~ ing mutation probability decays linearly witn.

(“bad” bits). String g has lengthm (m=m.>1/2). Obvi- Coming back to the interpretation of our results, the pic-

ously, b's Iengthﬁis equal tol —m. ture is as follows. Once an active cell materializes, the
By definition, mutations o enhance the affinity whereas chance of capturing an antigen and rapidly duplicating it can

mutations org decrease it. be estimated af,,=1XV,,, that is, one cell times its mi-

To compute the total probability of increasing the Ham-Croscopic affinityVy,. How many cells should materialize
ming distance(i.e., the number of 81 matchings of n before the duplication process is actually triggered? The con-
units, we must take into account all possible combinations ofition is of courseN,V,=1, which sets a natural threshold
mutations in theb andg strings such thak—j is equal ton. 1N, for the affinity maturation process to .take off. This
Here, k andj are, respectively, the number of mutations in threshold would of course favor high's, were it not for the

the b andg string andj <k so thatn>0. The expression of strong penalty set by the mutation probability: a direct jump
such total probability is forward of n matching numbers scales roughly lik&,

which means that the next matching number aboyeis
m) o m e picked up by the conditioN,V,,p™ Me>1, associated with
j|Pd K/ Par (1) acritical thresholdNS ~p™ ™V, . It is easily seen thaXiS,

is a sharply decreasing function wf unlessVv,, would grow

Pn= (
" kkSne
In Eqg. (1) the block (")plg™! gives the probability of
mutations in theg string, whereas the blocK{p*q™ ¥ gives .
the probability ofk mutations inb. Upon using the relation
k=n+]j, we may recast Eql) in terms of the index, which

runs between 0 anth—n (otherwise we would have a de- »“*
grading mutation Consequently, we can write ’

Total affinity

e
o1} *

m
n+j

o
Pi=3 |
j=0 J

pn+2qu—(n+2j)_ (2)

The probability of affinity-degrading mutation®, , is | chamgfigg ]
obtained by considering>k, swappingm with m in the Goneave-mutation OFF -~
above expression and letting the index run from (7 Yo JR Se—— _r

One minute’s thought reveals that, sineg>1/2, under
the standard conditom>m, P= P, —P, is negative, re-
flecting the intuitive idea that on average, mutation works
against high-affinity cells. FIG. 3. Total affinity as a function of timéog-log).
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faster than the decreasemf ™, not a plausible assumption phase, indeed the concave potential yields the quickest and
given the small value op. This explains the sequential na- most intense response, especially within the ramp-up period,
ture of the learning cascade. up to t~100. This is obviously due to the much higher af-
The next question relates to the mid-long term dynamicdinity of the B cells(see fourth column in Tablg.lAsymp-
of the response. Here, two competing effects must be baftotically, however, our data suggest that the convex shape
anced. might be able to recover due to the emergence of perfect
The probability of cell clonation is proportional 14,,. A match cells withm=1 suffering less competition witr_] other
stimulated cell duplicates every step during four steps aftefells as compared to the case of a concave potential.
stimulation, yielding 16 clones in four steps. This exponen- The above considerations, albeit still semiqualitative, pro-
tial growth is contrasted by a mean hypermutation loss provide a sound background for the interpretation of affinity
portional toP. There is no way for mutation to compete with Maturation as a cascade process in affinity space. They also
such exponential growth in the short term. show that the learning cascade is quite robust vis-a-vis the
It is plausible to assume that the long-term winner is seShape of the affinity potential. This latter, however, plays a
lected by the condition of maximiziny,,V,,/P, which leads central role in the short- and mid-term dynamics of the IS
to a second thresholdy%:>~ P/V,,. Now, using the simpli- €Sponse. _ _ _
fied expressiorP; given by Eq.(3), it is readily seen that In closing, a few considerations on computational perfor-

highest-affinity modes are favored unlegs, grows more ~'Mance are in order. The parallel simulator takes about 10
slowly than P{, i.e., linearly, withm. This supports the ms/step per grid point, corresponding 0 about 10,000 s

intuitive idea that convex potentials favor the developmente lapsed time for a 500-step-loxgbout 160 dayssimulation

S . : . on four processors of an UltraSparc Enterprise 4500.
?Sf; ?g;:rfggty populations as the asymptotic carriers of theMemory requirements peak at about 2 GBytes during the

Of course, the notion of asymptotic, long-term carriers burgt of laffinity maturation. _These figures prove that thg nu-
although interesting from the point of view of statistical me- merical investigation of the immune system response via the

chanics(final attractor of the systems not necessarily the Celada-S_e|den automaton requires substantial amounts of

one most relevant to immunological purposes. To this end?omputatlonal resources.

one is probably more interested in the short- and mid-term Fruitful discussions with Professors F. Celada and M.

(days-to-weeKs dynamics of the global affinityV(t) Nowak are kindly acknowledged. Special thanks to Dr. P.

=3 Nm(O) V. Seiden for his invaluable comments and suggestions. The
This is shown in Fig. 3 for the two different choices of Regional Computing Center of the University of Cologne

affinity potential. From these curves we see that, notwith{RRZK) is kindly acknowledged for providing the computa-

standing the significant statistical fluctuations in the initialtional resources.
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